weighing$95527$ - significado y definición. Qué es weighing$95527$
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es weighing$95527$ - definición

Weighing matrices; Weighing design
  • Weighing matrices are so called because of their use in optimally measuring the individual weights of multiple objects<ref name="Raghavarao1960"/><ref name="Seberry2017"/>
  • An optical mask (3) based on a weighing matrix is used in the measurement of the spectrum of incoming light (4). Depending on the corresponding element of the matrix, the light is either absorbed, or passed to one of two intensity detectors (1,2).<ref name="Sloane1976"/>

Weighing matrix         
In mathematics, a weighing matrix of order n and weight w is a matrix W with entries from the set \{0, 1, -1\} such that:
Waag         
  • Original interior of the weigh house of Hoorn. The scales here are made of wood, suspended from running beams and movable using overhead trolleys
  • Hay scales in Soham (GB)
PUBLIC BUILDING IN WHICH GOODS ARE WEIGHED
Waag; Weighing house; Weigh-house; Weigh House
·noun The Grivet.
Weigh-house         
  • Original interior of the weigh house of Hoorn. The scales here are made of wood, suspended from running beams and movable using overhead trolleys
  • Hay scales in Soham (GB)
PUBLIC BUILDING IN WHICH GOODS ARE WEIGHED
Waag; Weighing house; Weigh-house; Weigh House
·noun A building at or within which goods, and the like, are weighed.

Wikipedia

Weighing matrix

In mathematics, a weighing matrix of order n {\displaystyle n} and weight w {\displaystyle w} is a matrix W {\displaystyle W} with entries from the set { 0 , 1 , 1 } {\displaystyle \{0,1,-1\}} such that:

W W T = w I n {\displaystyle WW^{\mathsf {T}}=wI_{n}}

Where W T {\displaystyle W^{\mathsf {T}}} is the transpose of W {\displaystyle W} and I n {\displaystyle I_{n}} is the identity matrix of order n {\displaystyle n} . The weight w {\displaystyle w} is also called the degree of the matrix. For convenience, a weighing matrix of order n {\displaystyle n} and weight w {\displaystyle w} is often denoted by W ( n , w ) {\displaystyle W(n,w)} .

Weighing matrices are so called because of their use in optimally measuring the individual weights of multiple objects. When the weighing device is a balance scale, the statistical variance of the measurement can be minimized by weighing multiple objects at once, including some objects in the opposite pan of the scale where they subtract from the measurement.